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ABSTRACT

The Hausdorff dimension of the set of numbers which can be written
using digits 0,1,¢ in base 3 is estimated. For every ¢ irrational a lower
bound 0.767 ... is found.

1. Estimation of the Hausdorff dimension

1.1 STATEMENT OF THE PROBLEM. Consider an iterated function system W,
given by three generators:

o(z) = %’ Ya(z) = $+17 Yi(z) = ;v;—t

3

where t € R is a fixed parameter.
By [1], for every ¢ there is a unique compact set Z; which is invariant under
¥, and such that the orbit of any compact set under ¥; converges to Z; in the
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Hausdorff metric. An elementary intepretation of Z; is as the set of numbers
which can be represented by generally infinite expressions in base 3 which use
digits 0,1, ¢.

In this paper we are proving the following:

THEOREM 1: For every t irrational, HD(Z;) > 1 —log(5/3)/2log 3 > 0.767.

Since the Hausdorfl dimension in an affine invariant, from now we will assume
without loss of generality that |t| < 1. Theorem 1 will be derived from a technical
Theorem 2 which is stated later.

Conjectures of Furstenberg: Let’s quote three related conjectures of Fursten-
berg.

CoNJECTURE 1: For every t irrational, HD(Z;) = 1.

Let W be the limit set of the iterated function systems in R? which is generated
by z = z/3, z — [z + (1,0)]/3 and z — [z + (0,1)]/3.

CONJECTURE 2: For every t irrational and almost every 8 € R the linev = tu+0
intersects W along a set with Hausdorff dimension 0.

Let T denote the operator

1
T(@) = 5 [f(&) + fz = 1) + (o = 1)
acting on the space of continuous functions with compact support.

CONJECTURE 3: For every t irrational the spectral radius of the adjoint T* is
equal to 1.

Historical remarks: Theorem 1 is a step towards proving Conjecture 1. Con-
jecture 1 was the subject of work by several authors. One should mention [3]
where it was established that for almost every ¢, both in the topological and
category sense, HD(Z;) = 1, and that |Z;| = 0 (Lebesgue measure) for every ¢
irrational, see also [4]. In [2] a study of the continuity properties of the function
t — HD(Z;) was undertaken, while [6] contains numerical data mostly in support
of Conjecture 1.

1.2 ENERGY ESTIMATE. Given a positive probabilistic measure g on R and
«a > 0, we define its energy integral

L) = / dp(z)dply)

|z — yl|*
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For a Borel set Z C R consider the set A(Z) which consists of those o > 0 for
which there exists a Radon measure p, supported on Z and I4(ua) < oo. It is
known that HD(Z) = sup A(Z), see [5]. Hence, each time we get a measure p
supported on Z and I, (i) < 0o, we have bounded the Hausdorff dimension of Z
by a from below.

Natural measures: We will work with a concrete measure p! supported on Z;.
Consider a sequence of measures

1
ph = o, = §(50 + 01 + 04)

and
ph, = i % (Poupth) x - (g

for n > 0. The choice of equal weighting of the measures transferred by all
generators was of course arbitrary. One easily verifies that

pl = pbox O 1l

for 0 < k < n. Hence, measures puf, converge weakly to u* which is supported on
the interval [0,1/2].

Estimates: Let us begin to estimate the energy integral. Let 0 < a@ < 1. For
n > 0 denote Ly, == {(z,9):2-37" < |z —y| < 2-317"}.

””‘/ s Z/ dulx—ma B

Since pf = pt * ¢f, put and the support of ¥%,ut is contained in [~-377/2,37"/2],
we can write

du* (z)du' (y)
L, lz—yl*

= /L |z = y| ™% * h(z) * h(y)dpt, (z)dul, (y)

where h is a non-negative function with total mass 1 and support contained in
[-37%/2,37"/2]. Because of that, for (z,y) € L, we get

|z — y|7% * h(z) x h(y) < 3™

and

(1) L) < 3 3 / dpi, () d (9).

n
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Denote
@ s(n, B) = 3" / X(ca-nj2-n/21(E — y — B)duty(z)dp ()

iy / X(ea-j2a-ns2y(z — ) * (1)) (2)

where the apostrophe means the measure transported by the map z — —z. Then

3ne / dpt (z)dp (y) <

s(n,337") + -+ 5(n, 237") + s(n, —~237") + - + 5(n, - L37")
3n(l-a) ‘

If we write Sy, = supgeg s(n, 8), then we get from estimate (1) that

(3) In(uf) <8 3r(e7Ng,.

n=1
So the task is reduced to estimating the exponential rate of increase for S,.

1.3 PROJECTION MEASURE. Consider a measure v, in R? defined by

1
v = 5(5(0,0) + 6(0,1/3) + 8(1/3,0))-

If 1 denotes the homothety with scale 1/3, then we define

Un = v % (Yurn) -+ x (2 10n).

If m;: R? = R denotes the linear projection given by m(u,v) = tu + v, then
we have u!, = m.vy,. Hence
o ¥ (pn) = Mo 1 % V4 ¥ Pu(r 2 04) %k 7T (w2 )]
Measure v; * (11)' is obtained explicitly and equals
1
(4) = Z b(k, £)d(k/3,¢/3)

9
k,e=—1,0,1

where b(k, ) = 1if k # £, 3 if k = £ = 0 and 0 otherwise. Function b extends to
Z x Z by b(ky,£y) = b(k,£) where k,£=—1,0,1 and k — k1,£ — £, € 3Z.
From the defining formula (2),

s(n, B) = 3" / X(ea-njaa-nym(z — B)d(ut * (b)) (2)

=3" ) (vn x V) (k37" €37 ") X(3-n 2,9-n/2) (th3™" + 4377 — B).
k,tez
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For every k € Z and S, a non-zero contribution is obtained only when ¢ =
£, g(k) := (3"(B—kt3™™)) where (z) is the integer characterized by the condition
-1/2 < z - (z) < 1/2. If we also introduce the notation k,(z) = (3"z), then we
can write

s(n, B) = 8" > (vn * V) (k37" £ p(K)3™™)

kez
+o0
=07 [ (o0 3) (@37 thae)3 )

Define b,(u,v) = b(< 3'u >,< 3'v >). Then we can write for —(3" — 1)/2 <
k, £ < (3™ —1)/2 that

(vn + V) (K37, 037™) = 97" [ [ bs(k3 7™, £37™).

=1
If k, ¢ are outside that range, then (v, * v},)(k37™,£37") = 0. Hence we can
write

12 n
s(n,B) = / H B,(z, 8 — thy(z))dz

~1/2:2

where functions B,: T? — R are defined below.

Definition 1: If (z,y) € T? and i > 0, then

Bz(xv y) = b(k,(.’l)), k‘l(y))

2. Averaging estimates

We will denote T := (—1/2,1/2] and T? := T! x T! and think of identifying
pieces of the boundary so that tori are obtained. Let m(z) := z’ where 2’ € T*
and z — 2’ € Z. Recall that k,(z) = (3"z).

2.1 PARTITIONS RELATED TO BASE 3 EXPANSIONS. It will be useful to think
of the circle T! with the Lebesgue measure as a probabilistic space.

Definition 2: Say that an interval I C T is a basic interval of order n, n > 0,
if the transformation z — m(3"z) maps I onto T with degree 1.

For example, interval (—§, ] is basic of order 1. Let P,, denote the partition
of T! into basic intervals of order n.
Now let ¢: R — R.. For a positive integer n, define ¢,,: T* — T by

(5) ¢n(‘r) = ¢(3_nkn(x))

So, ¢y, is a P,,-measurable approximation of ¢.
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LEMMA 1: Let ¢ > 0 and n > 0 and ¢(z) = tx + ty. Then for every x € T

¢ (m(3%7)) + T(x) — 3T iq(x)
is an integer, where T'(z) = kq(z)t + (37 — 1)o

Proof: The expression which is to be shown to yield an integer is measurable

with respect to Py,4. It suffices to prove the claim for = (3"J 4 7)3-"~¢ with

3"13‘7 l]ad[ 3—1 3"

integers J and j ranging over [— 95—+ T‘l], respectively. For

z in such a form
3 ppiq(z) = 3%zt + to) = Jt + jt3™" + 3%,.
On the other hand,

$a((397)) = gn(m(J +37")) = ¢n(437") = m(4137" + to).
Finally, kq(x) = J and
T(z)=Jt+ (39— 1)t

which implies the claim. |

Lemmas about circle rotations: Let Ry: T! — T be defined by R;(z) = w(z+t).

Definition 3: Define the set U(t, K) C N by the following requirement: m €
U(t, K) if and only if for every z € T* and every J which is a sub-arc of T'! with
length 3™, the set

{Rf(z):p=0,1,...,3™" - 1}NnJ
has no more than K elements.

Thus, for m € U(t, K) the first 3™ points of any orbit are uniformly spread
out, in the sense that no “lumps” are formed.

LEMMA 2: For every t irrational the set U(t,6) is infinite.

Proof: Let ¢ be a closest return time for the rotation £ — z + tmod1. Then
the orbit z,..., R;"l(:c) cuts the circle into pieces of two sizes and the shorter
ones are never adjacent. Hence, any arc of length not exceeding 1/¢q may contain
at most two points of the orbit. If m is chosen so that 3™~ < ¢ < 3™, the the
orbit z, .. .,Rfm“l(x) can be covered by three orbits of length ¢q. Thus, no arc
of length 3=™ contains more than 6 points. [
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2.2 AVERAGES ALONG GRAPHS.

Definition 4: Suppose that F: T? - R and g: T! — R are given. Then we can
form a function Fy: T! — R by the following formula: Fy(z) = F(z, g(z)).

The general type of the problem we will consider is as follows. We wish to
average Fy along basic intervals, which corresponds to taking conditional expec-
tations with respect to partitions P,. The problem is under what assumptions
these averages can be estimated in terms of the average of F over T2.

PRrRoOPOSITION 1: Consider ¢(z) = tx + tg and choose N > 0 and K so that
NeU(t,K).

For every n. > 0 and every set A C T? which is measurable with respect to
PN X Pn we consider the function F: T? — R given by

F(z,y) = xa(x(3"*Vz), 73" Vy)).
Then,
E(F P)(@) <K / xadAs2
T2

for every x € T*, using the notation of Definition 4.

Proof: Choose an interval I € P,,. Observe first that without loss of generality
n = 0. Indeed, for n > 0 the interval I can be parameterized by a variable
z' = m(3"z) which runs over T*. We get 7(3V3"z) = 7(3¥1’) and, by Lemma 1,

13" N dnian(2)) = 7(3Y (¢ + T(2))2n(a"))
with T'(z) constant and equal to T(I) on I. Thus for every x € I

(n) — (0)
E(Fy, . |Pn)(z) = E(Fy, 1)

which leads to the initial problem with n = 0 and ¢¢ increased by T(I). Since
the claim is supposed to be valid for every ty, the reduction is complete.
We will write F for F(O and ¢ for ¢ + T(I).

Fyan (2) = xa(n(3Vz), (3" $an (2)))
= xa [7(3V2), 7(¢n(7(3"2)) + T(2))]

by Lemma 1 used with n = ¢ = N. If we write 2 = J3~V + j3-2N with

J,j both integers from the range [—3—1\%, 3N2‘1], we get w(3Vz) = 3~ and
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T(z) = Jt + Tp where Ty is a constant. We can then write

E(Fy,y) = E [xa(r(3Vz), n(¢n(r(3V2)) + T(2))]
3N-1)/2 (3N -1)/2

=32 3 o xalGE N, w(It+ ¢(37") + To)).

j=—(3N—1)/2 J=—(3¥ —-1)/2
For j fixed, points 7 (Jt+@(§37")+Ty) form an orbit of the rotation R; of length
3N. By the hypothesis of the Lemma, each square of the partition Py x Pn

contains no more than K points in the form (j3~N, n(Jt + 6(j3™") + Tp))).
Hence,

3MN-1)/2 3¥-1)/2

37, > xaG3 N, n(Jt+4(j3")+T)) SK/TZ Yadrs. 1

J=—(3N-1)/2 j=—(3N ~-1)/2

LEMMA 3: Foreveryt € R,m >n >0, ifd(z) = tx, to € R, and F: T? — [0, 0)
is measurable with respect to P, x Py, then

F(r(z), m(¢m(z) +t0)) < Y. F(n bn(2) +to +i37T))

2|z|<|t|+2

where i runs through integer values only.

Proof: Estimate |¢y,(z) — én(z)| < |¢|37"/2. Thus, for every z we can choose
7(z) in the form 137", where ¢ is an integer and —|t[/2—1 < i < |£|/2+ 1 so that
m(dn(z) + to + 7(x)) and 7(dm(x) + to) belong to the same element of P,, and
80

F(n(z), 7(¢pm(z) + to0)) = F(n(z), m(dn(z) + to + 7(z))).

Now 7(z) only takes values in the set ¢3~" with [¢| < [¢|/2+ 1 and so the lemma
follows. i

PROPOSITION 2: Lett € R, K > 0,n > 0 and N € U(t, K), see Definition 3.
Denote ¢(z) = tz. Let F: T? — [0,00) be measurable with respect to P, x P,.
Suppose that for a fixed I and every t; € R,

| Fou@iz <1
T1

see Definition 4 for the explanation of the notation.
Now G: T? — [0,00) is measurable with respect to Py x Py, N > 0. Define
G(z,y) = G(n(3"*Nz), n(3"+Ny)).
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Then, for every choice of t and K and every t; € R

|, Foreans1o(@) G aso(@de < K(t1+ 91 [ G

Proof: Fix some t; € R. Function Fy 4, is measurable with respect to P,,. By
Proposition 1,
E(G¢n+2N+tu an)(x) < Klg

for every z where Ig := [, GdA;. Now,
© [ Fosu@Conavsn@)s = [ (ot GopaysiolPo)(@)da
S KIG/ F¢"+t1 (.’L’)diL’ S KIGI
Tl

by the hypothesis of Proposition 2.
By Lemma 3

Fy,ian+to (z) = F(z, 1(dnyan(z) + 1)) < Z Fy ttot+73-n (z).
Je(=1-1t1/2,]t]/2+1)

If we use estimate (6) for all t; = to + j3™", we get

| Fousasto(@Cousmsan(@ds < KIo(ti+ 3. 0

2.3 AVERAGES OF PRODUCTS.

THEOREM 2: Fix t irrational and let ¢(x) = tz + to. Then for every A > /5/3
and tg € R we have

m
lim [,\-m /T 1 1];[131(1, qu(x))dx} =0.
Recall that functions B; are given by Definition 1. Since
sm,)= [ T] 8w 6m(@)
=1

with ¢(z) = B — tz, Theorem 2 implies that A™™8S,, — 0. By estimate (3),
I (p*) < oo provided that 31~ > 1/5/3 and Theorem 1 follows.
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Hélder estimate: From Lemma 2, see that U(t,6) is infinite and choose N €
U(t,6). Let Jg o denote the set of integers ¢ which belong to (2(j —1)N, (2j—1)N]
for some j =1,...,k and Ji 1 be the complement of Jy o in the set 1,2,...,2kN.
Define Pio(z,y) = [l;es, , Bi(z.y) and Pea(z,y) = [L,c s, , Bi(2,y). Then

2kN

1 Bi(@, ban(x)) = Peol=, darn () Pr1 (w, doen ()

=1

Our approach is to apply the Holder inequality to this product. It is easier to
estimate the second norm of Py (z, (¢+%1)2kn) with £, € R. Using Proposition 2
withn =2(k—1)N+ N, F:= P?_, | and G(z,y) = 1Y, B2(z,y), we get

1Pe1(z, (6 + t)2en)l] < 6] +3)1 /T Gax,

where I is an upper estimate for || Pr_1,1(x, (#+%1)2k—1)~]| for any ¢; € R. Note
that [, GdAz = (5/3)" and hence one gets by induction starting with Py; = 1
that

|| Pe,1(z, darn ()13 < KT (5/3)FN.
The same method is used to estimate the second norm of
Py o(x, (¢ + t1) @e-1yn (2))-

This time, the induction starts with || Py o(z, (¢ + t1)n(x))]|3 < 3V since 3V is
the maximum. Thus,

|1 Peo(e, (6 + t)e-nn ()13 < 3VKF1(5/3) R DN
Using Lemma 3 and applying the previous estimate for
tr = g3 2EDN 2l < tl,

we get
1Pe,o(x, $arn (@)1 < (It + 3)[| Peo(z, $agr-1yv (@) 112
< (Jt|+ 13V KEF1(5/3) 26— DN
By Halder’s inequality,

2kN

A—2kN /Tl E B, (z, p2xn(z))dz < \/m [g z\vféTl] kN.
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If A > /5/3 then N can be chosen so large that
5 VK,

372 < 1.
Then
2kN
(7) Jim [/\‘2’“” /T ] I=11 B.(z, parn(z))dz| = 0.
Any j > 0 can be represented as 2k, N + jo with jo < 2N. Then
g 2k, N
[1B.(z, ;) <3 [] Bi(z, (=)
=1 i=1

Again using Lemma 3 and the fact that we estimate

2k, N 2k, N
[ 11 Biadsende < (+1) [T Bulo, 6+ tr)as,w(@))is
T! =1 T =1

where £; was chosen to attain the supremum of the integral on the right-hand
side. Hence, for any j > 0,

2k, N

J
/ HBi(-'L'a (]%(.’L‘))d:l,‘ < 9N(|tl + 1) / H B,(ZE, (d) + t1)2k]N($))d$
T! 1=1 T =1

and Theorem 2 follows from this together with assertion (7). Notice that (7)
holds for any tg, in particular one can set tq := tg + £; in that estimate.
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