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ABSTRACT 

The  Hausdorf f  d imens ion  of the  set of n u m b e r s  which can  be  wr i t t en  

us ing  digits 0, 1, t in base 3 is es t imated .  For every t i r rat ional  a lower 

b o u n d  0 .767 . . .  is found.  

1. E s t i m a t i o n  o f  t h e  H a u s d o r f f  d i m e n s i o n  

1 .1  S T A T E M E N T  OF THE PROBLEM. Consider an iterated function system ~t  

given by three generators: 

x x + l  x + t  
"1' [ ' qY0i, X] = ~ ,  ~ ) I ( X ) - -  3 ' ~ ) t ( X ) - -  3 

where t E R is a fixed parameter. 

By [1], for every t there is a unique compact set Zt which is invariant under 

~t and such that the orbit of any compact set under ~t  converges to Zt in the 
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Hausdorff metric. An elementary intepretation of Zt is as the set of numbers 

which can be represented by generally infinite expressions in base 3 which use 

digits 0, 1, t. 

In this paper  we are proving the following: 

THEOREM 1: For every t irrational, HD(Z t )  _> 1 - l o g ( 5 / 3 ) / 2 1 o g 3  > 0.767. 

Since the Hausdorff dimension in an affine invariant, from now we will assume 

without loss of generality that  It] < 1. Theorem 1 will be derived from a technical 

Theorem 2 which is stated later. 

Conjectures of Furstenberg: Let 's  quote three related conjectures of Fursten- 

berg. 

CONJECTURE 1: For every t irrational, HD(Z t )  = 1. 

Let W be the limit set of the iterated function systems in R 2 which is generated 

by x -+ x/3,  x --+ Ix + (1, 0)]/3 and x -+ [x + (0, 1)]/3. 

CONJECTURE 2: For every t irrational and almost every/3 E R the line v = tu+~ 

intersects W along a set with Hausdorff dimension O. 

Let T denote the operator 

1 
T y ( x )  = IV(z) + y ( z  - 1) + f ( x  - t)] 

acting on the space of continuous functions with compact support.  

CONJECTURE 3: For every t irrational the spectral radius of  the adjoint T* is 

equal to 1. 

Historical remarks: Theorem 1 is a step towards proving Conjecture 1. Con- 

jecture 1 was the subject of work by several authors. One should mention [3] 

where it was established that  for almost every t, both in the topological and 

category sense, HD(Zt )  = 1, and that  IZtl = 0 (Lebesgue measure) for every t 

irrational, see also [4]. In [2] a study of the continuity properties of the function 

t -+ HD( Z t )  was undertaken, while [6] contains numerical data  mostly in support  

of Conjecture 1. 

1.2 ENERGY ESTIMATE. Given a positive probabilistic measure # on R and 

a > 0, we define its energy integral 

f d#(x)d#(y) 
: =  Ix - Yf" 
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For a Borel set Z C R consider the set A(Z) which consists of those a > 0 for 

which there exists a Radon  measure  tta suppor ted  on Z and I a (#~ )  < c~. I t  is 

known tha t  HD(Z) = sup A(Z) ,  see [5]. Hence, each t ime we get a measure  # 

suppor ted  on Z and I~ (#) < ~ ,  we have bounded  the Hausdorff  dimension of Z 

by a f rom below. 

Natural measures: We will work with  a concrete measure  #t suppor ted  on Zt. 
Consider a sequence of measures  

and 

1 
,~  = 5 o , , I  = 5(5o + 51 + St) 

n- -1  t 
~ -- ~ �9 ( r  * . . . *  (r ~1) 

for n > 0. The  choice of equal weighting of the measures  t ransferred by all 

generators  was of course arbi t rary.  One easily verifies t ha t  

k t 

for 0 < k < n. Hence, measures  #t u converge weakly to #t which is suppor ted  on 

the interval [0, 1/2]. 

Estimates: Let us begin to es t imate  the energy integral. Let  0 < ~ < 1. For 

n > 0 denote L~ :-- {(x, y): 2 . 3  -'~ < Ix - Yl <- 2 . 3 1 - n } .  

i.(.~)= f d.~(x)d.~(Y) ~ f~ d#t(x)d#t(Y) 

Since #t = # t ,  r  and the suppor t  of r  is contained in [ - 3 - ~ / 2 ,  3 - 'V2] ,  

we can write 

d#t(x)d#t(Y) - ~ ,x _ y,-~ , h(x) , h(y)dttt (x)d#t (y) 
I x - YI" 

where h is a non-negat ive function with to ta l  mass  1 and suppor t  contained in 

[ - 3 - 2 / 2 ,  3 -n /2 ] .  Because of tha t ,  for (x, y) C L~ we get 

ix - y l - "  * h (x )  �9 h(~)  < 3 ~ 

and 

(1) 
o o  

I~(p t) < ~ 3 n~ / i  d#t~(x)dttt(Y)" 
n ~ l  n 
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Denote  

(2) f 
~(n, ~) = 3 n J x(-~-on,~-~nl(x - y - (~)@*, (y) 

3 n / X ( - 3 - . / 2 , 3 - . / 2 ] ( z  - a)d(# t * (#tn)')(z) 

where the apos t rophe  means  the measure  t ranspor ted  by the m a p  x --+ - x .  Then  

3 'm f d#~(x)d#~(y) < 
J Ln  

~(n, ~3 -n) + . . .  + ~(,,, ~3  ~ -n )+  ~(., -~3~ -n) + . . . +  ~(~, _~3-n )  
3n(1-c*) 

I f  we write Sn = sup/~eR s(n, fl), then we get from es t imate  (1) tha t  

(x) 
(3) I a ( ~  t) ~ 8 ~ 3n(~- l )Sn  �9 

n=l  

So the task  is reduced to es t imat ing  the exponential  ra te  of increase for Sn. 

1.3 PROJECTION MEASURE. Consider a measure  vl in R 2 defined by 

1 5 //1 : ~((0 ,o)  + 5(o,1/3) + 5(1/3,0)). 

If  r denotes the homothe ty  with scale 1/3, then we define 

[~l,n--1 v "~ 
vn = v l  * ( r  ~ ,  l j .  

If  rrt: R ~ -+ R denotes the linear project ion given by r v) = tu + v, then 

we have # t  = r t .Vn.  Hence 

~tn * (/Ztn) ' 71"t* [//1 * /21 * ~3, (/]1 * /2~) * .* ,  ~ ,  ~,Pl * P~)]. 

Measure Vl * (vl) r is obta ined  explicitly and equals 

1 (4) ~ ~ b(k,~)~(~/~,~n) 
k,~=--l,0,1 

where b(k, ~) = 1 if k r ~, 3 if k = g = 0 and 0 otherwise. Funct ion b extends  to 

Z x Z by b(k~,g~) = b(k,g) where k , t =  - 1 , 0 ,  1 and k - k l , ~ -  ~1 E 3Z. 

From the defining formula (2), 

~(~, ~) = 3nf  x(-3-~n,~-onl(~ Z)d(~ (4)')(~) 
= a n ~ ( , n ,  , ' )(ka-",~a-n)x(-~-on,~-onl(tk3 -n + ~a -n - ~). 

k ,~EZ 
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For every k E Z and /~, a non-zero contr ibut ion is obtained only when ~ -- 

gn,~(k) := (3n(/~ - kt3-n)> where (x> is the integer characterized by the condit ion 

- 1 / 2  < x - (x> _< 1/2. If  we also introduce the nota t ion kn(x) = (3nx>, then we 

can write 

.(n, ~) = a n ~ ( ~ n  �9 ~')(ka-n, ~n,e(k)a -n) 
kCZ 

= 9 n J * ~  (.n �9 ~') (kn(x)a -~, kn(~ - tkn(x))a -n) dx. 

Define b~(u,v) = b(< 3iu > , <  3~v >) .  Then  we can write for - ( 3  n - 1)/2 < 

k, g _< (3 n - 1)/2 tha t  

(.n �9 J) (ka-n,ea  -n) = 9 -n ~ b~(ka-n, ~a-n). 
i----1 

If  k,g are outside tha t  range, then (Vn * v ' ) ( k 3 - " , g 3  -n )  = 0. Hence we can 

write 
[ . 1 /2  n 

s ( , ~ , ~ )  : ]_ II B~(x,~-tkn(~))d~ 
1 ~2 

- -  / i = 1  

where functions B~: T 2 --+ R are defined below. 

Definition 1: If  (x, y) E T 2 and i > 0, then 

B,(. ,  y) := b(k~(.), k,(~)). 

2. Averaging estimates 

We will denote T 1 :=  ( - 1 / 2 ,  1/2] and T 2 :=  T 1 x T 1 and think of identifying 

pieces of the boundary  so tha t  tori are obtained. Let r ( x )  :=  x '  where x '  E T 1 

and x - x '  E Z. Recall tha t  kn(x) = (3nx}. 

2 .1  PARTITIONS RELATED TO BASE 3 EXPANSIONS. I t  will be useful to think 

of the circle T 1 with the Lebesgue measure as a probabilistic space. 

Detlnition 2: Say tha t  an interval I C T 1 is a basic interval of order n, n > 0, 

if the t ransformat ion x -+ 7r(3nx) maps I onto T 1 with degree 1. 

For example, interval ( - ~ ,  ~] is basic of order 1. Let 7~n denote the par t i t ion 

of T 1 into basic intervals of order n. 

Now let r R -+ R.  For a positive integer n, define en:  T 1 -+ T 1 by 

(5) r  :=  r  

So, en is a Pn-measurable  approximat ion of r 
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LEMMA 1: Let  q > 0 and n > 0 and r  = t x  + to. Then for every x E T 1 

Cn(Tr(3qx)) § T (x )  - 3qCn+q(X) 

iS an integer, where T(x )  = kq(x) t  + (3 q - 1)to. 

Proof'. The expression which is to be shown to yield an integer is measurable 

with respect to Pn+q. It  suffices to prove the claim for x = (3'~J + j ) 3  - ~ - q  with 

integers J and j ranging over [_3q-12 ,3q-11~ j and [ 3n-12 , 3 ~ 1 ] ,  respectively�9 For 

x in such a form 

3qr = 3q(xt + to) = g t  + j t 3  -~  + 3qto. 

On the other  hand, 

Cn(gr(3qx)) = Cn(~r(J + j n - n ) )  = r  -n )  = ~r(jt3 -n  + to). 

Finally, kq (x) = J and 

which implies the claim�9 

T ( x )  = J t  + (3q - 1)to 
| 

Lemmas  about  circle rotations: Let Rt:  T 1 -4 T 1 be defined by R t ( x )  = ~r(x+t). 

Definition 3: Define the set U(t,  K)  c N by the following requirement:  m c 

U(t,  K )  if and only if for every x E T 1 and every J which is a sub-arc of T 1 with 

length 3 -m,  the set 

{RtP(x):p = 0 , 1 , . . . , 3  m -  1} n J 

has no more than  K elements�9 

Thus, for m E U(t ,  K )  the first 3 m points of any orbit  are uniformly spread 

out,  in the sense tha t  no "lumps" are formed�9 

LEMMA 2: For every t irrational the set U(t ,  6) is infinite. 

P r o o f  Let q be a closest re turn t ime for the rota t ion x -4 x § t mod 1. Then 

the orbit  x , . . . ,  R ~ - l ( x )  cuts the circle into pieces of two sizes and the shorter 

ones are never adjacent. Hence, any arc of length not exceeding 1/q may contain 

at most  two points of the orbit. If  m is chosen so tha t  3 m-1 < q < 3 m, the the 
�9 R 3 m - l ( x  ~ orbit  x, ., t ~ j can be covered by three orbits of length q. Thus, no arc 

of length 3 -m  contains more than 6 points. | 
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2.2 AVERAGES ALONG GRAPHS. 

Detinition 4: Suppose tha t  F :  T 2 --+ R and g: T 1 --+ R are given. Then  we can 

form a function Fg: T 1 -+ R by the following formula: Fg(x) = F(x ,g (x ) ) .  

The general type of the problem we will consider is as follows. We wish to 

average Fg along basic intervals, which corresponds to taking conditional expec- 

tat ions with respect to part i t ions Pn. The problem is under what  assumptions 

these averages can be est imated in terms of the average of F over T 2. 

PROPOSITION 1: Consider r  = tx + to and choose N > 0 and K so that 

N 6 U(t, K) .  

For every n >_ 0 and every set A C T a which is measurable with respect to 

PN X 7DN we consider the function F: T 2 --+ R given by 

F (n) (x, y) = XA(7~(3'~+Nx), ~(3~+Ny)).  

Then, 

fT 
for every x 6 T 1, using the notation of De$nition 4. 

Proof: Choose an interval I 6 Pn- Observe first tha t  wi thout  loss of generality 

n = 0. Indeed, for n > 0 the interval I can be parameter ized by a variable 

x '  = r (3nx)  which runs over T 1. We get ~r(3N3~x) = r ( 3 g x  ') and, by Lemma 1, 

= (r + T(x))2  (x')) 

with T(x)  constant  and equal to T(I )  on I .  Thus for every x E I 

E(F(o:)+:Nlpn)(x) <o) = E(F;~N+T<I)) 

which leads to the initial problem with n = 0 and to increased by T(I ) .  Since 

the claim is supposed to be valid for every to, the reduction is complete. 

We will write F for F (~ and r for r + T(I ) .  

Fr N (x) = XA(~r(3Nx), , (3Nr 

= xA + 

by Lemma 1 used with n = q = N.  If  we write x = J3 -N  + j3  -2N with 

J , j  both  integers from the range [ 3N-1 3N-11 2 , ~ j, we get 7r(3gx) ---- j3  - g  and 
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T(x) = Jt + To where To is a constant. We can then write 

E(Fr = E [XA(Tr(3N x), Ir(r -4- T(x))] 

(3N--I)/2 (3N--I)/2 
= 3-2N E E XA(j3 -g ,  r (J t  + r -n) + To)). 

j------(3N--1)/2 J------(3N--I)/2 

For j fixed, points ~r(Jt+r -'~) +To) form an orbit of the rotation Rt of length 

3 g.  By the hypothesis of the Lemma, each square of the partition ~O N X PN 
contains no more than K points in the form (j3 -N, ~r(Jt + r -n) + To))). 

Hence, 

(3/v--I)/2 (3N--I)/2 

3-2N E E XA(j3-g'~r(Jt+r176 <- K /T2X d  " ' 
J=-(3N-1)/2 j=-(3N-1)/2 

LEMMA 3: Foreveryt E R, m > n > 0, ire(x) = tx, to E R, a n d F :  T 2 -+ [0 ,~)  

is measurable with respect to 7a,~ x P,~, then 

F(~r(x), ~r(r + to)) < E F(lr(x), ~'(r + to + i3-n)) 
21,1<1t1+2 

where i runs through integer values only. 

Proof: Estimate [era(x) - Cn(x)[ ~ ]t[3-"/2. Thus, for every x we can choose 
T(X) in the form i3 -n, where i is an integer and - I t [ / 2 -  1 < i < [t[/2-4-1 so that 

7r(r -4- to + r(x)) and ~r(r + to) belong to the same element of Pn, and 

SO 

+ to))  = + to + 

Now T(X) only takes values in the set i3 -'~ with ]i I < Itl/2 + 1 and so the lemma 

follows. | 

PROPOSITION 2: Let t E R, K > O, n >_ 0 and N E U(t, K),  see Definition 3. 
Denote r = tx. Let F: T 2 --+ [0, co) be measurable with respect to Pn x .pn. 

Suppose that for a fixed I and every tl E R, 

IT, (x)dx <_ I; Fr 

see Det~nition 4 for the explanation of the notation. 
Now G: T 2 -+ [0, c~) is measurable with respect to "PN x 79N, N > O. Det~ne 

G(x, y) -~ G(r(3'~+Nx), ~'(3'~+Ny)). 
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Then, for every choice of t and K and every to E R 

f~, r+o+2~++o(X) ~.++~+~o(~)dx ~_ K(Ltl + 3)i f~+ c ~ .  
Proof'. Fix some tl E R. Function Feb+t, is measurable with respect to P,+. By 

Proposition 1, 

g(5,~+~N+to[P,+)(x) < KIo  

for every x where Ia  := fT2 GdA2. Now, 

(6) f. F,++,,(~)0,o+~.+,o(~)e~= ~E(F+o+. O+o+,.++ol~'.)(x)ax 
<_ KIa  [ FO,,+t~ (z)dx < KIGI 

J T  1 

by the hypothesis of Proposition 2. 

By Lemma 3 

Fr ) = F(x, r(r + to)) _< E 
j E ( - - 1 - - 1 t [ / 2 , [ t [ / 2 +  l ) 

If we use estimate (6) for all t l  = to + j3 -n,  we get 

fT'  Fcn+2N+t~162176 <- Kit(It[  + 3)I. 

2 . 3  AVERAGES OF PRODUCTS. 

F,o++o+~3-o (~). 

THEOREM 2: 

and to E R we have 
Fix t irrational and let r -- tx + to. Then for every A > X / ~  

lim A -m Bi(x,r = 0 .  
7r$ -~t O0 1 

$--=1 

Recall that functions Bi are given by Definition 1. Since 

m 

s(m,~) = IT I-I B+(x'r 
1 z = l  

with r = fl - tx, Theorem 2 implies that A-'~Sm --* 0. By estimate (3), 

I,~(# t) < ec provided that  31-~ > V / ~  and Theorem 1 follows. 
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H61der estimate: From Lemma 2, see that  U(t, 6) is infinite and choose N E 

U(t, 6). Let Jk,o denote the set of integers i which belong to ( 2 ( j -  1)N, ( 2 j -  1)N] 

for some j = 1 , . . . ,  k and Jk,1 be the complement of Jk,o in the set 1, 2 , . . . ,  2kN. 
Define Pk,o(X, y) = ~ iCJk ,o  B i ( z '  Y) and Pk,l(x, y) = H~Jk,1 B~(x, y). Then 

2kN 

H Bi(x, r = Pk,o(X, r r 

Our approach is to apply the HSlder inequality to this product. It  is easier to 

estimate the second norm ofPk,l(x, (r with tl E R.  Using Proposition 2 
2 with n = 2(k - 1)N + N, F := P/~-1,1 and G(x, y) = [IN1 B~(x, y), we get 

[IPk,l(X, (CA- tl)2kN)ll < 6([tl + 3)If Gd~2 
JT 2 

where I is an upper estimate for I[Pk_l,l(x, (r for any tl  E R. Note 

that  fT 2 GdA2 = (5/3) g and hence one gets by induction starting with Po,1 ~ 1 

that  

IlPk,l(x, r < g k ( 5 / 3 )  kN. 

The same method is used to estimate the second norm of 

Pk,o(x, (r + tl)(2k-1)N(X) ). 

This time, the induction starts with IIPl,o(X, (r + tl)N(X))ll 2 < 3 N since 3 N is 

the maximum. Thus, 

IIPk,o(X, (r + tl)(2k-1)N(X) )ll 2 <_ 3N Kk1-l(5/3) (k-1)N. 

Using Lcmma 3 and applying the previous estimate for 

tl = j3 -2(k-1)N, 21jl < It], 

we get 

Ilgk,o(x, r _~ (Itl § 3)llgk,o(x, r 
<_ (]tl + 1)3NKk1-l(5/3) 2(k-1)N. 

By H51der's inequality, 

A-2kN ~ H B,(x,r <_ V/3~v(Itl + 3) Lg-~-- j . 
~*----I 
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If & > V / ~  then N can be chosen so large that  

Then 

(7) 

5 
- - - < 1 .  
3 &2 

2kN ] 
fJr II B,(x,r : lim )~-2kg 0. 

k - - ~  ~ i=1 

Any j > 0 can be represented as 2kj N + jo with jo < 2N. Then 

./ 2k 3 N 

I I  B~(x 'r  <- 3J~ H Bi (x , r  
~=1 i = l  

Again using Lemma 3 and the fact that  we estimate 

2kj N 2k3 N 

H B~(x,(/~3(x))dx ~ (It]-}- 1 ) J ;  1 - I  B,(x,(r N(x))dx 

where ti  was chosen to at tain the supremum of the integral on the right-hand 

side. Hence, for any j > O, 

3 2k~ N 

~,=1 1 '~=1 

and Theorem 2 follows from this together with assertion (7). Notice that  (7) 

holds for any to, in particular one can set to := to + tl  in that  estimate. 
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